Practical Engineering Geology

All engineering structures react with the ground, and most structures make use of materials extracted from the earth. While an engineer cannot be expected to be also an expert geologist, he must have a working knowledge of the subject if his structures are to be economically designed, safely built and safely used. He must also be able to recognise where and when he needs the advice of a specialist. A Manual of Applied Geology is designed as a guide for practising engineers. A team of distinguished engineers and scientists has been assembled to present the basic information which an engineer needs and to explain how best to use this information to deal with problems in his work. Chapters cover general theory, Formation of rocks, their properties and identification, landforms and soils, geophysical methods, maps and other information sources. The particular problems of terrain evaluation, site selection and investigation and common
construction problems (including groundwater control, stability, foundations and underground work) are examined and there are chapters on materials and hydrogeology. Aimed principally at the engineer who is meeting geological problems in his everyday work, this generously illustrated volume will also be useful as an introduction to the subject for first degree engineering students.

Mapping in Engineering Geology

Steve Hencher presents a broad and fresh view on the importance of engineering geology to civil engineering projects. Practical Engineering Geology provides an introduction to the way that projects are managed, designed and constructed and the ways that the engineering geologist can contribute to cost-effective and safe project achievement. The nee

Italian journal of engineering geology and environment

The Encyclopedia of Soil Science provides a comprehensive, alphabetical treatment of basic soil science in a single volume. It constitutes a wide ranging and authoritative collection of some 160 academic articles covering the salient aspects of soil physics, chemistry, biology, fertility, technology, genesis, morphology, classification and geomorphology. With increased usage of soil for world food production, building materials, and waste repositories, demand has grown for a better global understanding of soil and its processes. Longer articles by leading authorities from around the world are supplemented by some 430 definitions of common terms in soil sciences.

Geology for Ground Engineering Projects

"Eighteen chapters address the complex yet critical aspects of the role of geosciences in military undertakings. The chapters cover a wide range of expertise drawn from the broad area of geology, geomorphology, geography, geophysics, engineering geology, hydrogeology, cartography, environmental science, remote sensing, soil science, geoinformatics, and related disciplines that reflect the multidisciplinary nature of military geology"--

Engineering Geology and Geomorphology of Glaciated and Periglaciated Terrains

Since 1900, the science of geology has grown in a spectacular fashion. Not only have field studies been undertaken throughout vast areas of the earth's surface previously unexplored or only superficially surveyed, but recent discoveries in physics, chemistry, and biology have provided geologists with new techniques of observation and experimentation, and radically new concepts and theories have been developed. This book presents source literature for the most important
contributions to this remarkable expansion of geological knowledge. One of the world's most distinguished geologists provides excerpts from sixty-five articles by sixty-three authors, selected with the advice of more than a score of leading scientists from all parts of the globe. Among the subjects discussed in this comprehensive volume are the constitution of the earth's interior, the causes of earthquakes, radioactive timekeepers, the interpretation of submarine features and deep-sea cores, the origin and entrapment of petroleum, and crystal structure. Included are articles which led directly to the development of theories of paleomagnetism, metamorphism, cryopedology, and isostasy. A Source Book in Geology, 1900-1950, makes available several papers previously to be found in the libraries of only a few universities, and eight articles translated into English for the first time, of which four are by leading Soviet geologists.

ENVIRONMENTAL AND ENGINEERING GEOLOGY -Volume I

Engineering geology and hydrogeology are applied sciences which utilize other applied sciences such as geophysics to solve practical problems. The book is written in the monograph format with seven chapters. The first chapter introduces the engineering and hydrogeological tasks to be discussed in the book. Relations between the physical, geomechanical and hydrogeological parameters are discussed in chapters three and five. Methods for field measurements and interpretation of field data are discussed in chapters four and six. Some special methods not routinely used in current practice are discussed in chapter seven. To illustrate and analyze the various applications, the authors have drawn from the extensive literature including many studies not previously described in English texts. Theoretical analyzes are supplemented by numerous examples. This book is addressed to university students of geology especially engineering geology and hydrogeology, geophysics and earth sciences, and post graduate, researches, and practising engineering geologists, geotechnical engineers, and hydrogeologists.

Engineering Geology for Society and Territory - Volume 2

Engineering geologists face the task of addressing geological factors that can affect planning with little time and with few resources. A solution is using the right tools to save time searching for answers and devote attention to making critical engineering decisions. The Handbook of Research on Trends and Digital Advances in Engineering Geology is an essential reference source for the latest research on new trends, technology, and computational methods that can model engineering phenomena automatically. Featuring exhaustive coverage on a broad range of topics and perspectives such as acoustic energy, landslide mapping, and natural hazards, this publication is ideally designed for academic scientists, industry and applied researchers, and policy and decision makers seeking current research on new tools to aid in timely decision-making of critical engineering
situations.

Advances in Geotechnical Engineering

Environmental And Engineering Geology is a component of Encyclopedia of Environmental and Ecological Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Environmental and Engineering Geology with contributions from distinguished experts in the field discusses matters of great relevance to our world such as: engineering and environmental geology, and their importance in our life. It also includes a discussion of some new applications of geoscience, such as medical geology, forensic geology, use of underground space for human occupancy, and geoindicators. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.

The Scope of Hydrogeology

The main body of the first volume is taken up by five major keynote papers written by a team of international experts, that survey the enormous advances that have taken place in geotechnical engineering since Skempton's pioneering early work. The second volume contains more than 80 articles that report recent research and advances in practice from around the world. The papers focus on the broad range of geotechnical issues, that most interested Professor Skempton, and are grouped under the headings of: - Soil behaviour, characterisation and modelling - Foundations - Slopes and embankments - Ground performance - The influence of geology on civil engineering.

Engineering Geology

Winner of the 2004 Claire P. Holdredge Award of the Association of Engineering Geologists (USA). The only book to concentrate on the relationship between geology and its implications for construction, this book covers the full scope of the subject from site investigation through to the complexities of reservoirs and dam sites. Features include international case studies throughout, and summaries of accepted practice, plus sections on waste disposal, and contaminated land.

Applied Geophysics in Hydrogeological and Engineering Practice

Encyclopedia of Geology, Second Edition presents in six volumes state-of-the-art reviews on the various aspects of geologic research, all of which have moved on considerably since the writing of the first edition. New areas of discussion include
extinctions, origins of life, plate tectonics and its influence on faunal provinces, new types of mineral and hydrocarbon deposits, new methods of dating rocks, and geological processes. Users will find this to be a fundamental resource for teachers and students of geology, as well as researchers and non-geology professionals seeking up-to-date reviews of geologic research. Provides a comprehensive and accessible one-stop shop for information on the subject of geology, explaining methodologies and technical jargon used in the field. Highlights connections between geology and other physical and biological sciences, tackling research problems that span multiple fields. Fills a critical gap of information in a field that has seen significant progress in past years. Presents an ideal reference for a wide range of scientists in earth and environmental areas of study.

Rock Mechanics

This book complements the Geological Society's Special Publication 362: Military Aspects of Hydrogeology. Generated under the auspices of the Society's History of Geology and Engineering Groups, it contains papers from authors in the UK, USA, Germany, and Austria. Substantial papers describe some innovative engineering activities, influenced by geology, undertaken by the armed forces of the opposing nations in World War I. These activities were reactivated and developed in World War II. Examples include trenching from World War I, tunnelling and quarrying from both wars, and the use of geologists to aid German coastal fortification and Allied aerial photographic interpretation in World War II. The extensive introduction and other chapters reveal that 'military geology' has a longer history. These chapters relate to pre-twentieth century coastal fortification in the UK and the USA; conflict in the American Civil War; long-term 'going' assessments for German forces; tunnel repair after wartime route denial in Hong Kong; and tunnel detection after recent insurgent improvisation in Iraq.

Engineering Geology for Underground Works

The ongoing population growth is resulting in rapid urbanization, new infrastructure development and increasing demand for the Earth's natural resources (e.g., water, oil/gas, minerals). This, together with the current climate change and increasing impact of natural hazards, imply that the engineering geology profession is called upon to respond to new challenges. It is recognized that these challenges are particularly relevant in the developing and newly industrialized regions. The idea beyond this Volume is to highlight the role of engineering geology and geological engineering in fostering sustainable use of the Earth's resources, smart urbanization and infrastructure protection from geohazards. We selected 19 contributions from across the globe (16 countries, five continents), which cover a wide spectrum of applied interdisciplinary and multidisciplinary research, from geology to engineering. By illustrating a series of practical case studies, the Volume offers a rather unique opportunity to share the
experiences of engineering geologists and geological engineers who tackle complex problems working in different environmental and social settings. The specific topics addressed by the papers included in the Volume are the following: pre-design site investigations; physical and mechanical properties of engineering soils; novel, affordable sensing technologies for long-term geotechnical monitoring of engineering structures; slope stability assessments and monitoring in active open-cast mines; control of environmental impacts and hazards posed by abandoned coal mines; assessment of and protection from geohazards (landslides, ground fracturing, coastal erosion); applications of geophysical surveying to investigate active faults and ground instability; numerical modeling of seabed deformations related to active faulting; deep geological repositories and waste disposal; aquifer assessment based on the integrated hydrogeological and geophysical investigation; use of remote sensing and GIS tools for the detection of environmental hazards and mapping of surface geology.

Mapping in Engineering Geology

This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, run out and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches. The congress topics and subject areas of the 8 IAEG XII Congress volumes are: Climate Change and Engineering Geology. Landslide Processes. River Basins, Reservoir Sedimentation and Water Resources. Marine and Coastal Processes. Urban Geology, Sustainable Planning and Landscape Exploitation. Applied Geology for Major Engineering Projects. Education, Professional Ethics and Public Recognition of Engineering Geology. Preservation of Cultural Heritage.
New Frontiers in Engineering Geology and the Environment

The Engineering Group of the Geological Society Working Party brought together experts in glacial and periglacial geomorphology, Quaternary history, engineering geology and geotechnical engineering to establish best practice when working in former glaciated and periglaciated environments. The Working Party addressed outdated terminology and reviewed the latest academic research to provide an up-to-date understanding of glaciated and periglaciated terrains. This transformative, state-of-the-art volume is the outcome of five years of deliberation and synthesis by the Working Party. This is an essential reference text for practitioners, students and academics working in these challenging ground conditions. The narrative style, and a comprehensive glossary and photo-catalogue of active and relict sediments, structures and landforms make this material relevant and accessible to a wide readership.

Practical Engineering Geology

Bridges the Gap between Geology and Ground Engineering High-quality geological models are crucial for ground engineering projects, but many engineers are not always at ease with the geological terminology and analysis presented in these models, nor with their implications and limitations. Project engineers need to have a sound comprehension of the geological models presented to them, and to be able to discuss the models in so far as they might impinge on the design, safety and possible budgetary or time constraints of the project. They should also fully understand how site investigation data and samples are used to develop and substantiate geological models. Geology for Ground Engineering Projects provides a comprehensive presentation of, and insight into, the critical geological phenomena that may be encountered in many engineering projects, for example rock contact relationships, weathering and karst phenomena in tropical areas, composition of fault zones and variability of rock discontinuities. Examples are provided from around the world, including Southeast Asia, Europe, North and South America, China and India. Comprehensive and well-illustrated, this definitive book: Describes the important geological phenomena that could affect ground engineering projects Provides a practical knowledge-base for relevant geological processes Addresses common geological issues and concerns Rocks are described in relation to the environment of their formation, highlighting the variation in composition, distribution and geotechnical properties that can be expected within a variety of rock associations. Case studies, where geology has been a vital factor, are included. These are written by the project engineers or geologists responsible for the projects. Geology for Ground Engineering Projects is well illustrated with color diagrams and photographs. Readers are directed to satellite images of selected areas to explore for themselves many of the geological features described in this book.
Military Geosciences in the Twenty-First Century

Encyclopedia of Engineering Geology

The construction of tunnels involves the resolution of various complex technical problems depending on the geological and geological-environmental context in which the work fits. Only a careful analysis of all the geological and geological-environmental issues and a correct reconstruction of the conceptual model can lead to optimal design solutions from all points of view (including financial) and ensure the safety of workers during the construction and users in the operation phase. It was therefore felt that there was a need to collect in one volume the state of current knowledge about: all the geological and environmental issues related to the construction of underground works the different methodologies used for the reconstruction of the conceptual model the different risk typologies that it is possible to encounter or that can arise from tunnel construction, and the most important risk assessment, management and mitigation methodologies that are used in tunneling studies.

Active Geophysical Monitoring

Every engineering structure, whether it's a building, bridge or road, is affected by the ground on which it is built. Geology is of fundamental importance when deciding on the location and design of all engineering works, and it is essential that engineers have a basic knowledge of the subject. Engineering Geology introduces the fundamentals of the discipline and ensures that engineers have a clear understanding of the processes at work, and how they will impact on what is to be built. Core areas such as stratigraphy, rock types, structures and geological processes are explained, and put in context. The basics of soil mechanics and the links between groundwater conditions and underlying geology are introduced. As well as the theoretical knowledge necessary, Professor Bell introduces the techniques that engineers will need to learn about and understand the geological conditions in which they intend to build. Site investigation techniques are detailed, and the risks and risk avoidance methods for dealing with different conditions are explained. * Accessible introduction to geology for engineers * Key points illustrated with diagrams and photographs * Teaches the impact of geology on the planning and design of structures

Quarterly Journal of Engineering Geology and Hydrogeology

'Engineering geology' is one of those terms that invite definition. The American Geological Institute, for example, has expanded the term to mean ‘the application of the geological sciences to engineering practice for the purpose of assuring that the geological factors affecting the location, design, construction, operation and
maintenance of engineering works are recognized and adequately provided for. It has also been defined by W. R. Judd in the McGraw-Hill Encyclopaedia of Science and Technology as ‘the application of education and experience in geology and other geosciences to solve geological problems posed by civil engineering structures’. Judd goes on to specify those branches of the geological or geosciences as surface (or surficial) geology, structural/fabric geology, geohydrology, geophysics, soil and rock mechanics. Soil mechanics is firmly included as a geological science in spite of the perhaps rather unfortunate trends over the years (now happily being reversed) towards purely mechanistic analyses which may well provide acceptable solutions for only the simplest geology. Many subjects evolve through their subject areas from an interdisciplinary background and it is just such instances that pose the greatest difficulties of definition. Since the form of educational development experienced by the practitioners of the subject ultimately bears quite strongly upon the corporate concept of the term ‘engineering geology’, it is useful briefly to consider that educational background.

Principles of Engineering Geology

Humans as Geologic Agents

Engineering Geology

The waters and rich resources of the South China Sea are claimed by seven different countries, and it is estimated that approximately 40% of the world’s trade moves through the area. Marine Geology and Geotechnology of the South China Sea and Taiwan Strait examines the physiology, geology, and potential development of this important portion of the western Pacific Ocean’s largest marginal sea. The book covers multiple oceanographic topics, and further discusses topography, sedimentation, wave generation, and hazards such as earthquakes, storm surges, and tsunamis. In addition, it explains the engineering issues and design considerations involved regarding a potential Taiwan Strait Crossing, as well as the development of near-shore communities. Features: Examines seabed material, such as clays, calcareous, siliceous, and various other organic sediments Presents different potential routing strategies for sea crossings using tunnels, bridges, or a combination of both Provides bridge design recommendations considering aesthetics, seismic and wind issues, potential vessel collisions, and more Includes a historical timeline and useful maps regarding the political complexity of the area and the various territorial claims made by different nations Marine Geology and Geotechnology of the South China Sea and Taiwan Strait serves as a valuable resource for geotechnical engineers, marine geologists, civil engineers, and professionals concerned with the region.
Active geophysical monitoring is an important new method for studying time-evolving structures and states in the tectonically active Earth's lithosphere. It is based on repeated time-lapse observations and interpretation of rock-induced changes in geophysical fields periodically excited by controlled sources. In this book, the results of strategic systematic development and the application of new technologies for active geophysical monitoring are presented. The authors demonstrate that active monitoring may drastically change solid Earth geophysics, through the acquisition of substantially new information, based on high accuracy and real-time observations. Active monitoring also provides new means for disaster mitigation, in conjunction with substantial international and interdisciplinary cooperation. Introduction of a new concept Most experienced authors in the field Comprehensiveness

Engineering Geology and Construction

Handbook of Research on Trends and Digital Advances in Engineering Geology

“New Frontiers in Engineering Geology and the Environment” collects selected papers presented at the International Symposium on Coastal Engineering Geology (ISCEG-Shanghai 2012). These papers involve many subjects – such as engineering geology, natural hazards, geoenvironment and geotechnical engineering – with a primary focus on geological engineering problems in coastal regions. The proceedings provide readers with the latest research results and engineering experiences from academic scientists, leading engineers and industry researchers who are interested in coastal engineering geology and the relevant fields. Yu Huang works at the Department of Geotechnical Engineering, Tongji University, China. Faquan Wu works at the Institute of Geology and Geophysics, Chinese Academy of Science, China and he is also the Secretary General of the International Association for Engineering Geology and the Environment. Zhenming Shi works at the Department of Geotechnical Engineering, Tongji University, China. Bin Ye works at the Department of Geotechnical Engineering, Tongji University, China.

Encyclopedia of Soil Science

The Channel Tunnel has been called the greatest engineering project of the century, overcoming a unique set of financial, political and engineering challenges. This book provides a comprehensive insight into the events which culminated in the first dry link between Britain and France. It describes the relationship between the site investigation, data interpretation and construction of the works. It
examines areas such as the difficulties inherent in predicting geology from a relatively small number of boreholes and revealing how the use of modern geophysical techniques.

Engineering Geology

Steve Hencher presents a broad and fresh view on the importance of engineering geology to civil engineering projects. Practical Engineering Geology provides an introduction to the way that projects are managed, designed and constructed and the ways that the engineering geologist can contribute to cost-effective and safe project achievement. The nee

Marine Geology and Geotechnology of the South China Sea and Taiwan Strait

Recent Research on Engineering Geology and Geological Engineering

The Essence of Geotechnical Engineering

Developments in Engineering Geology is a showcase of the diversity in the science and practice of engineering geology. All branches of geology are applicable to solving engineering problems and this presents a wide frontier of scientific opportunity to engineering geology. In practice, diversity represents a different set of challenges with the distinctive character of the profession derived from the crossover between the disciplines of geology and engineering. This book emphasizes the importance of understanding the geological science behind the engineering behaviour of a soil or rock. It also highlights a continuing expansion in the practice areas of engineering geology and illustrates how this is opening new frontiers to the profession thereby introducing new knowledge and technology across a range of applications. This is initiating an evolution in the way geology is modelled in engineering, geohazard and environmental studies in modern and traditional areas of engineering geology.

Developments in Engineering Geology

The ongoing population growth is resulting in rapid urbanization, new
infrastructure development and increasing demand for the Earth's natural resources (e.g., water, oil/gas, minerals). This, together with the current climate change and increasing impact of natural hazards, imply that the engineering geology profession is called upon to respond to new challenges. It is recognized that these challenges are particularly relevant in the developing and newly industrialized regions. The idea beyond this volume is to highlight the role of engineering geology and geological engineering in fostering sustainable use of the Earth's resources, smart urbanization and infrastructure protection from geohazards. We selected 19 contributions from across the globe (16 countries, five continents), which cover a wide spectrum of applied interdisciplinary and multidisciplinary research, from geology to engineering. By illustrating a series of practical case studies, the volume offers a rather unique opportunity to share the experiences of engineering geologists and geological engineers who tackle complex problems working in different environmental and social settings. The specific topics addressed by the authors of chapters included in the volume are the following: pre-design site investigations; physical and mechanical properties of engineering soils; novel, affordable sensing technologies for long-term geotechnical monitoring of engineering structures; slope stability assessments and monitoring in active open-cast mines; control of environmental impacts and hazards posed by abandoned coal mines; assessment of and protection from geohazards (landslides, ground fracturing, coastal erosion); applications of geophysical surveying to investigate active faults and ground instability; numerical modeling of seabed deformations related to active faulting; deep geological repositories and waste disposal; aquifer assessment based on the integrated hydrogeological and geophysical investigation; use of remote sensing and GIS tools for the detection of environmental hazards and mapping of surface geology. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017.

Military Aspects of Geology

ENGINEERING GEOLOGY Still looking for an awesome gift? Then you must get this ENGINEERING GEOLOGY. Perfect gift for men, women, especially your dad, mom, brother, sister, uncle, aunt, friends or grandparents to celebrate their anniversary. Great gift to write bright ideas and happiness reminders, to-do lists and meeting planner, as well as take notes, or just have fun and get creative gift ideas for you, your family or friends that match your rule ENGINEERING GEOLOGY Features: Unique design Can be used as diary, diary, notebook and sketchbook 109 discarded pages of lined paper High quality paper Perfect for gel, pen, ink, marker or pencils. 6 x 9 in dimensions; Portable size for school, home or travel Printed on white paper

Manual of Applied Geology for Engineers
A Source Book in Geology, 1900-1950

This volume addresses the multi-disciplinary topic of engineering geology and the environment, one of the fastest growing, most relevant and applied fields of research and study within the geosciences. It covers the fundamentals of geology and engineering where the two fields overlap and, in addition, highlights specialized topics that address principles, concepts and paradigms of the discipline, including operational terms, materials, tools, techniques and methods as well as processes, procedures and implications. A number of well known and respected international experts contributed to this authoritative volume, thereby ensuring proper geographic representation, professional credibility and reliability. This superb volume provides a dependable and ready source of information on approximately 300 topical entries relevant to all aspects of engineering geology. Extensive illustrations, figures, images, tables and detailed bibliographic citations ensure that the comprehensively defined contributions are broadly and clearly explained. The Encyclopedia of Engineering Geology provides a ready source of reference for several fields of study and practice including civil engineers, geologists, physical geographers, architects, hazards specialists, hydrologists, geotechnicians, geophysicists, geomorphologists, planners, resource explorers, and many others. As a key library reference, this book is an essential technical source for undergraduate and graduate students in their research. Teachers/professors can rely on it as the final authority and the first source of reference on engineering geology related studies as it provides an exceptional resource to train and educate the next generation of practitioners.

Engineering Geology and Geotechnical Engineering

The Quarterly Journal of Engineering Geology

Geology for Engineers: the Geological Model, Prediction and Performance : the First Glossop Lecture

Engineering Geology of the Channel Tunnel

Rock mechanics is a multidisciplinary subject combining geology, geophysics, and engineering and applying the principles of mechanics to study the engineering behavior of the rock mass. With wide application, a solid grasp of this topic is invaluable to anyone studying or working in civil, mining, petroleum, and geological engineering. Rock Mechani
Engineering Geology and Geological Engineering for Sustainable Use of the Earth's Resources, Urbanization and Infrastructure Protection from Geohazards

Copyright code: efcf2433cdb150f765458ebeb141e3f2